

USN

10CS/IS661

Sixth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Operations Research

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. What are different phases of operation research? Briefly explain phases of operations research study. (08 Marks)
 - b. Old hens can be brought at ₹50/each but young ones cost ₹100/- each. The old hens lay 3 eggs/week and young ones lay 5 eggs/week. Each egg sold at ₹2/-. A hen costs ₹5/week to feed. If a person has only ₹3000/- to spend for hens. Formulate the problem to decide how many of each kind of hen should he buy? Assume that he cannot house more than 50 hens.

(06 Marks)

- c. Define the following with respect to a LPP. Give example for each:
 - (i) Feasible solution
 - (ii) Feasible region
 - (iii) Infeasible solution

(06 Marks)

2 a. Solve the following LPP by using graphical method:

Maximize $Z = 5x_1 + 4x_2$

Subject to $6x_1 + 4x_2 \le 24$

$$x_1 + 2x_2 \le 6$$

$$-x_1+x_2\leq 1$$

$$x_2 \le 2$$

where x_1 , $x_2 \ge 0$ b. What are methods of post optimality analysis of LPP? (08 Marks) (02 Marks)

c. Solve the following LPP by using Simplex method.

Maximize $Z = 5x_1 + 3x_2$

Subject to
$$x_1 + x_2 \le 2$$

$$5x_1 + 2x_2 \le 10$$

$$3x_1 + 8x_2 \le 12$$

where
$$x_1, x_2 \ge 0$$

(10 Marks)

a. Solve the following by using Big-M method.

Maximize $Z = 6x_1 + 4x_2$

Subject to
$$2x_1 + 3x_2 \le 30$$

$$3x_1 + 2x_2 \le 24$$

$$x_1 + x_2 \ge 3$$

where
$$x_1, x_2 \ge 0$$

(10 Marks)

b. Solve the following LPP by using Two-phase Simplex method.

Maximize $Z = 5x_1 + 3x_2$

Subject to
$$2x_1 + x_2 \le 1$$

$$x_1 + 4x_2 \ge 6$$

(08 Marks)

where x_1 , $x_2 \ge 0$ c. Mention software packages used to solve LPP.

(02 Marks)

4 a. Solve the following LPP by using revised Simplex method.

Maximize
$$Z = 2x_1 + x_2$$

$$3x_1 + 4x_2 \le 6$$

$$6x_1 + x_2 \le 3$$

where
$$x_1, x_2 \ge 0$$

(10 Marks)

- b. Explain the following terms:
 - (i) Weak duality property (ii) Strong duality property (iii) Complimentary solution property.

 (06 Marks)
- c. Write the dual of the following:

(i) Maximize
$$Z = 4x_1 + 10x_2 + 25x_3$$

Subject to
$$2x_1 + 4x_2 + 8x_3 \le 25$$

$$4x_1 + 9x_2 + 8x_3 \le 30$$

$$6x_1 + 2x_3 \le 40$$

where
$$x_1, x_2, x_3 \ge 0$$

(ii) Minimize
$$Z = 20x_1 + 40x_2$$

Subject to
$$2x_1 + 20x_2 \ge 40$$

$$20x_1 + 3x_2 \ge 20$$

$$4x_1 + 20x_2 \ge 30$$

where
$$x_1, x_2 \ge 0$$

(04 Marks)

PART - B

- 5 a. Briefly explain about sensitivity analysis.
 - b. Explain primal-dual relationship with an example.

(05 Marks) (05 Marks)

c. Solve the following by using dual simplex method.

Minimize
$$Z = 2x_1 + 2x_2 + 4x_3$$

Subject to
$$2x_1 + 3x_2 + 5x_3 \ge 2$$

$$3x_1 + x_2 + 7x_3 \le 3$$

$$x_1 + 4x_2 + 6x_3 \le 5$$

where
$$x_1, x_2, x_3 \ge 0$$

(10 Marks)

6 a. Solve the following transportation problem by using (i) North-West corner method (ii) Vogel's approximation method.

	Desti	nation
1	^	2

Source

-	1	2	3	4	Supply
1	3	1	7	4	300
2 [2	6	5	9	400
3	8	3	3	2	500

Demand 250 350 400 200

(10 Marks)

b. Solve the following assignment problem.

~			
11	h	10	ct
Su	U		UL

Professor

	S_1	S_2	S_3	S_4
P_1	2	10	9	7
P ₂ P ₃ P ₄	15	4	14	8
P_3	13	14	16	11
P_4	3	15	13	8

Find the schedule so as to minimize the total subject preparation time for all subjects.

(10 Marks)

10CS/IS661

- a. Explain following terms with example:
- (iii) Payoff matrix

(06 Marks)

(i) Saddle point (ii) Value of the game (iii) Ib. Solve the following game by dominance principle:

				Player E	3	
		1	2	3	4	5
	1	2	5	10	7	2
Player A	2	3	3	6	6	4
	3	4	4	8	12	1

(07 Marks)

c. Solve optimally using graphical method by considering the payoff matrix of player A as shown below:

		Player B					
		1	2	3	4	5	
	1	3	6	8	4	4	
Player A	2 [-7	4	2	10	2	

(07 Marks)

- 8 Explain the following terms:
 - a. Metaheuristics, advantages and disadvantages
 - b. Tabu search algorithm
 - c. Genetic algorithm
 - d. Simulated annealing

(20 Marks)